Bampton CE Primary School and Nursery

Learning together with Respect, Friendship and Perseverance

School Vision Statement

We endeavour to enable individuals in our school community to learn together, grow in respect, tolerance and understanding of the world in which we live, embrace Christian values and reach our full potential.

Title of Policy	Calculation Policy
Date Adopted by the Governing Body	October 2022
Review Date	October 2024
Signed by the Chair of Governors	

Basic Principles of Mathematics

Mental Strategies for Addition and Subtraction

Number bonds and related number bond facts		Near doubles
$7+3=10$	$7+7=14$	$7+7=14$
$70+30=100$		so
$0.7=0.3=1$	$20-10=10$	$7+8=15$
Commutative law of addition $7+68$ is equivalent to $68+7$	Using the inverse	Partitioning both numbers
	$\begin{aligned} & 14+8=22 \\ & 8+14=22 \\ & 22-14=8 \\ & 22-8=14 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 52+42= & 76-24= \\ 50+40+2+2= & 70-20+6-4= \\ 90+4=94 & 50+4=52 \end{array}\right.$
Partitioning one number (Sequencing)	Compensation	Balancing
$\begin{array}{ll} 52+42= & 76-24= \\ 52+40+2=92 & 76-20-4=52 \end{array}$	In compensation we use our knowledge of place value and rounding. This strategy is particularly useful for working with numbers ending in $1,2,8$ and 9 $673+99$	In balancing we alter both numbers to make a calculation easier to complete, often using our knowledge of place value and rounding.
	$673+100-1=772$	$58+26$ $58-26$
	46-18	$58+2=60$ $58+4=62$
	$46-20+2=28$	$26-2=24 \quad 26+4=30$
		$60+24=84 \quad 62-30=32$

Glossary

Addend - A number to be added to another.

Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.
Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - Change a number or expression for another of an equal value.

Minuend - A quantity or number from which another is subtracted.

Partitioning - Splitting a number into its component parts.

Reduction - Subtraction as take away.
Subitise - Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.
Total - The aggregate or the sum found by addition.

Foundation/Year 1

Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part part whole model			$\begin{aligned} & 3+2=5 \\ & 2+3=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$
Starting with the bigger number and counting on	 1 2 3 4 5 6 7 8 9 10 11 12 13 16 15 16 17 18 19 20. S. sn count on the answer.		$\begin{aligned} & 12+5=17 \\ & 17=12+5 \end{aligned}$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.		$9+5=14$ If I (1) 4 $+1$ $+4$ d on to \qquad now?	 Partition the smaller number to make 10. $\begin{aligned} & 9+5=14 \\ & 14=9+5 \end{aligned}$

Year 2

Objective	Concrete	Pictorial	Abstract								
Adding multiples of ten		$\\|\\|\\|+\\| U=\\|\\|\\|\\| J$	$\begin{aligned} & 20+30=50 \\ & 30+?=50 \\ & 50=30+20 \end{aligned}$ 3 tens add 2 tens is \qquad tens								
	$\begin{aligned} & 90+0= \\ & 0+00= \\ & 0+00= \end{aligned}$	$\begin{aligned} & \cdot \cdot+\cdots=\cdot \cdots \\ & \\|\\|+\\|\\|=\\| \\| \\| \\ & +\frac{+}{\\|}=+ \end{aligned}$	$\begin{aligned} & 3+2=5 \\ & \text { leads to } \\ & 30+20=50 \\ & \text { leads to } \\ & 300+200=500 \end{aligned}$								
Adding a two-digit number and tens			$\begin{aligned} & 21+30=51 \\ & 21+?=51 \end{aligned}$ Explore the fact that the ones digit does not change.								
Adding a two digit number and ones using base 10		Use ten frames and Number lines to make \square 'magic ten'. -	$\begin{aligned} & 17+5=22 \\ & 1 \quad \text { facts } \\ & 1, \ldots 2 \\ & 5+17=22 \\ & 22-5=17 \\ & 22-17=5 \end{aligned}$								

Year 2

Objective	Concrete	Pictorial	Abstract								
Adding two two-digit numbers using partitioning			$47+25$ $47+25$ $\downarrow \downarrow$ $20{ }_{5} \downarrow$ $40+2 \downarrow^{\downarrow} \downarrow$ $47+20=67$ $40+20=60$ $67+5=72$ $7+5=12$ $60+12=82$								
Add three one-digit numbers			$\begin{aligned} 4^{4+7+6} & =(10)+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add the third.								
Column method no regrouping	Tens Cus 0000 $\ddots \quad$. $\bullet \bullet$ \ddotsTens Ons 00	Tens Ones $\\|$ $=-$ $\\|\\|$ $=$ $\\|\\|\\|$ $=$ $\\|\\|$ Draw dienes using a tens and ones frame. Draw counters using a tens and ones frame.	Start by partitioning the numbers before moving onto formal column addition. $\begin{array}{cc} & 40+2 \\ 42 \\ +21 \\ \hline 63 \end{array} \quad \begin{gathered} \text { +20+1} \\ \hline 60+3=63 \\ \text { then the tens. } \end{gathered}$ Add the ones first, then the tens and finally the hundreds. $\begin{array}{r} 223 \\ +\quad 145 \\ \hline 368 \end{array}$								

Key Stage	Key Vocabulary
KS1	add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, addition, column, Subitise, commutative
LKS2	add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, 'exchange, expanded, compact, thousands, hundreds, digits, inverse, complement, addend ,subitise, commutative
UKS2	add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, exchange, expanded, compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths, complement, addend, aggregation, augmentation, commutative

Foundation/Year 1

Objective	Concrete	Pictorial	Abstract
Taking away ones		Cross out drawn subjects to show what has been taken away	$5-2=3$
Counting back	Make the larger number on your bead string. Move the beads along your bead string as you count backwards in ones.	Count back on the number line or number track. Start at the bigger number and count back the smaller number	Put 7 in your head and count back 5 . What number are you at? $7-5=2$
Find the difference		Count on using the number line or number track to find the difference. Start at the smaller number and count up to the bigger number.	Hannah has 7 crayons and Sarah has 2 crayons. How many more crayons does Hannah have?

Objective	Concrete	Pictorial	Abstract
Part - part - whole method		जF Fip pre 	$2+?=6$
Regrouping to make 10		Start by making 14. Take 4 away to make 10. Now take 1 more away so you have subtracted 5. Use 10 as a stopping point. Jump back 4 first then another 1 .	$14-5=9$ How many do we take off first to get to 10? How many left to take of?

Objective	Concrete	Pictorial	Abstract					
Subtracting multiples of ten			$\begin{aligned} & 50-30=20 \\ & 20=50-30 \end{aligned}$ 5 tens subtract 3 tens is \qquad tens					
Using known number facts			$5-3=2$ leads to $50-30=20$ leads to $500-300=200$					
Subtracting tens from a two-digit number	$\left\\|\left\\|\left\\|^{\\|} \quad\right\\|\right.\right.$	//V	$\begin{aligned} & 51-30=21 \\ & 51-?=21 \end{aligned}$ Explore the fact that the ones digit does not change.					
Regrouping tens into 10 ones	11%	$\\| \rightarrow \square$	$20-4=16$					
Partitioning to subtract without regrouping	$\\|\\|: \quad \mid 1 \div$	(1/ $/$ \%	$\begin{aligned} & 47-22=25 \\ & 40-20=20 \\ & 7-2=5 \\ & 20+5=25 \end{aligned}$					

Objective	Concrete	Pictorial	Abstract
Partitioning - counting back and on in tens then ones		Use the number line to count back in tens and then the rest. Use a number line to count on in tens and then the rest	$47-23=24$ $83-?=26$ What is the difference between 83 and 26?
Column method no regrouping	Tene Onus 0 Tens Ones (9)	tens ones 	Start by portioning numbers before moving onto formal column subtraction. $\begin{array}{r} 60+3 \\ -20+1 \\ \hline 40+2 \end{array}=42$ $\begin{array}{r} 63 \\ -21 \\ \hline 42 \end{array} \quad \text { subtract the ones first } \quad \text { then the tens. }$

Objective	Concrete			Pictor			Abstract
numbers of		354.27-247.32					
		Hundreds	Tens	Ones	¢ Tenths	Hundredths	Line up decimal points.
		- .	$\bullet \because$		-	$\because: \because$	$\frac{-247.32}{106.95}$
							Insert zero for place holders to avoid place value mistakes.
		Hundreds	Tens	Ones	¢ Tenths	Hundrecths	
		$x \quad x$	$x_{x}^{x x}$	$\begin{gathered} x \times 0 \\ x \quad x^{x} \\ \times x \\ x \end{gathered}$		xy*	$26^{512} 8{ }^{\prime} .0$
		1	0	6		5	$\begin{array}{r} -\quad 26.7 \\ \hline 237.3 \end{array}$

Key Stage	Key Vocabulary
KS1	Equal to, take away, less, minus, subtract, difference between, how many more, how many fewer/less than, most, least, count back, how many left, count on, partition, tens, units, digit
LKS2	Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, units, exchange, decrease, hundreds, value, digit, inverse., subtrahend, minuend,
UKS2	Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, units, exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal place, decimal ,subtrahend, minuend,

Mental Strategies for Multiplication and Division

Times table facts and related times table facts $\left\{\begin{array}{l} 7 \times 3=21 \\ 70 \times 30=210 \\ 0.7 \times 3=2.1 \end{array}\right.$	Repeated addition for multiplication $\begin{aligned} & 7 \times 3= \\ & 7+7+7=21 \end{aligned}$	Repeated subtraction for division $\begin{aligned} & 21 \div 7=3 \\ & 21-7-7-7 \end{aligned}$
Commutative law of multiplication 7×3 is equivalent to 3×7	Using the inverse $\begin{aligned} & 3 \times 7=21 \\ & 21 \div 7=3 \\ & 21 \div 3=7 \end{aligned}$	Partitioning one number $\left\lvert\, \begin{aligned} & 7 \times 23= \\ & 7 \times 20+7 \times 3= \\ & 140+21=161 \end{aligned}\right.$
Doubling 93×4 is double 93 add double 93 Halving $448 \div 4$ is half 448 and half again	Place value knowledge $\begin{aligned} & 21 \times 12=252 \\ & 21 \times 1.2=25.2 \\ & 0.21 \times 12=2.52 \\ & 25.2 \div 12=2.1 \end{aligned}$	Using a known tables and adjusting/adding/ subtracting $\begin{aligned} & 14 \times 7= \\ & 12 \times 7=84 \\ & 2 \times 7=14 \\ & 84+14=98 \end{aligned}$
Using place value and multiplication/division facts $\begin{aligned} & 189 \div 9 \\ & 180 \div 9=20 \\ & 9 \div 9=1 \\ & 20+1=21 \end{aligned}$	Divisibility rules e.g numbers that are wholly divisible by 3 have a digit sum of 3,6 or 9 . $\begin{aligned} & 567 \div 3 \\ & 5+6+7=18 \\ & 1+8=9 \end{aligned}$ 597 is wholly divisible by 3 .	$\begin{aligned} & 18 \times 16=288 \\ & 19 \times 16=288+16=304 \end{aligned}$

Glossary

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division
Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

LKS2

Objective	Concrete	Pictorial	Abstract
multiply			$\begin{array}{cc} 20 & 6 \\ 40 & 12 \\ 4 \times 15=4 \times 10+4 \times 5= \\ 40+20=60 \end{array}$
Grid Method	x 10 3 $\|l\| l\|l\| l \mid$	x 10 3 4 $\bullet \cdot$ $\because \because$ $\because \because$	x 10 3 4 40 12 $40+12=52$ x 10 3 20 200 60 4 40 12 240 72$240+72=312$

Key Stage	Key Vocabulary
KS1	Groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, tens, units, value
LKS2	Groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, multiple, product, tens, units, value, inverse, multiplicand, scaling
UKS2	Groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, multiple, product, tens, units, value, inverse, square, factor, integer, decimal, short/long multiplication, exchange, multiplicand, scaling

Objective	Concrete	Pictorial	Abstract
Division as sharing			12 shared between 3 is 4 $12 \div 3=4$
Division as grouping			$9 \div 3=3$ 9 $?$ $?$ $?$ 9 ? $?$ $?$ How many are in each group?
Division with arrays - Link to inverse			$\begin{aligned} & 15 \div 3=5 \\ & 15 \div 5=3 \end{aligned}$

KS1

Year 6

132 (ones) divided by 15 is 8 . Write 8 in the ones column.	028
	$1 5 \longdiv { 4 3 2 }$
	-30
	132
8 (ones) multiplied by 15 is 120 (ones). Write 120 underneath 132.	028
	028
	$1 5 \longdiv { 4 3 2 }$
	-301
	$\begin{array}{r}132 \\ -120 \\ \hline\end{array}$
132 subtract 120 is 12.	
12 is the remainder.	028×12
	15432 -301
	132
	-120
	12

Key Stage	Key Vocabulary
KS1	Share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line
LKS2	Share, share equally, one each, two each.., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple, divisible by, factor, scaling, quotient, dividend, divisor
UKS2	Share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple, divisible by, factor, quotient, prime number, prime factors, composite number (non-prime), common factor, scaling, quotient, dividend, divisor

